Probabilistic Latent Variable Models as Nonnegative Factorizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Latent Variable Models as Nonnegative Factorizations

This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invariances, higher-order decompositions and sparsity constraints. We argue through these extensions th...

متن کامل

Probabilistic Distributional Semantics with Latent Variable Models

We describe a probabilistic framework for acquiring selectional preferences of linguistic predicates and for using the acquired representations to model the effects of context on word meaning. Our framework uses Bayesian latent-variable models inspired by, and extending, the well-known Latent Dirichlet Allocation (LDA) model of topical structure in documents; when applied to predicate–argument ...

متن کامل

Combining Probabilistic Search, Latent Variable Analysis and Classification Models

The EM and1 K-Means algorithms are two popular search techniques that converge to a local minimum of their respective loss functions. The EM algorithm uses partial assignment of instances while the K-Means algorithm uses exclusive assignment. We show that an exclusive random assignment (ERA) algorithm that performs exclusive assignment based on a random experiment can outperform both EM and K-M...

متن کامل

Probabilistic Inference with Generating Functions for Poisson Latent Variable Models

Graphical models with latent count variables arise in a number of fields. Standard exact inference techniques such as variable elimination and belief propagation do not apply to these models because the latent variables have countably infinite support. As a result, approximations such as truncation or MCMC are employed. We present the first exact inference algorithms for a class of models with ...

متن کامل

Multi-view Anomaly Detection via Probabilistic Latent Variable Models

We propose a nonparametric Bayesian probabilistic latent variable model for multi-view anomaly detection, which is the task of finding instances that have inconsistent views. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2008

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2008/947438